

State-of-the-Art Status for Deep-Space SmallSat Telecom

2018 Int'l Planetary Probe Workshop

Short Course on Small Satellites

Boulder, Colorado; USA

June 9th 2018

M. Michael Kobayashi

Jet Propulsion Laboratory at the California Institute of Technology

Outline

- Presenter Biography
- Deep-Space Telecom Challenges
- NASA's Deep-Space Network
- Telecom Subsystem Components
 - Spacecraft Deployable Antennas
 - Software Defined Radios
 - Power Amplifiers
- Current State-of-the-Art Development
- Future Topics
- Summary

Presenter Biography

M. Michael Kobayashi (B.S., M.S. in Electrical Engineering)

- 10+ years experience at JPL
- Various flight hardware deliveries to
 - Mars Science Laboratory (aka Curiosity Rover)
 - Soil Moisture Active Passive (SMAP) Mission
 - Mars Cube One (first deep-space CubeSat)
 - NASA/ISRO Synthetic Aperture Radar (NISAR)

NASA

Challenge #1 – Long Distances

Fransmitter Power (Watts) for 100 bps max rate

Challenge #2 – Time and Navigation

Spacecraft distance and velocity is determined by radiometric techniques from the ground

- Doppler tracking
- Ranging (Sequential or Pseudo-noise)
- Very Long Baseline Interferometry (VLBI)

A highly stable clock is necessary for the accuracy and precision for orbit determination (analogous to 18th century marine chronometers for longitudinal determination)

Challenge #3 – Spacecraft Dynamics

NASA's Deep Space Network **MADRID GOLDSTONE CANBERRA** Plans to be added as part of the DSN In commission **Aperture Enhancement Project by 2025** (2018)

Multiple Spacecraft Per Aperture (MSPA)

MSPA allows communication up to four spacecraft in an aperture beam

- Simultaneous downlink
- Sequential uplink commanding

Example in-beam applications:

- Mars Network
- Sun-Earth Lagrange Points
- SmallSat Constellations

Opportunistic MSPA (OMSPA) provides open-loop downlink support for SmallSats if they are in-beam to host spacecraft antenna beam

Spacecraft Deployable Antennas

Deployable Reflectarray

X-band

Gain: 29.2 dBi

Dimensions: 59.7 x 33.5 cm

Stowed: 20 x 33.5 x 1.25 cm

Deployable Parabolic

Ka-band

Gain: 42.6 dBi

Diameter: 0.5 m

Stowed: 10 x 10 x 15 cm

Deployable Reflector

Ka-band

Gain: 49.2 dBi

Diameter: 1.0 m

Stowed: 2.5 U

[1] R. E. Hodges, et.al, "A Deployable High-Gain Antenna Bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars.," in IEEE-APS, vol. 59, no. 2, pp. 39-49, April 2017.

[2] N. Chahat, et.al., "Deep Space Network Telecommunication CubeSat Deployable Ka-band Mesh Reflector Antenna", IEEE-APS Trans. June 2016.
[3] Y. Rahmat-Samii, et.al., "Ka-band Highly Constrained Deployable Antenna For Raincube: Engineering Development and Pattern Measurements", IEEE-APS Symp. 2018.

JPL Flight SDR Developments

- Leading the pathway to "smart radios"
 - Reconfigurable to adapt to mission-specific needs
 - Platform for rapid technology infusion
 - Delay/Disruption Tolerant Networking
 - Pseudo-noise (PN) Regenerative Ranging
 - Advanced higher-order modulation schemes
 - State-of-the-art Forward Error Correction algorithms

MSL Electra-Lite UHF Relay Radio

CoNNeCT S-band Radio

TGO Electra UHF Relay Radio

M2020 Electra-Lite UHF Relay Radio

JPL Flight Software-Defined Radio Developments 2011 2013 2014 2016 2017 2020 2021 2022 2023 M2020 Landing MSL Landing NISAR Ka-band **M3 MAVEN Electra** MarCO Iris Deep-Radar Digital Radar Digital Modulator Instrument **UHF Relay Radio** Space Transponder Assembly Assembly

JPL Deep-Space Transponders

		Iris	UST-DS	UST-Lite*	
Radio Specification	Units				
Frequency Bands		X up, X down	S/X up, S/X down Simultaneous dual band	X/Ka up, X/Ka down Simultaneous dual band	
Mass	kg	1.0	5.4	3.0	
Volume	сс	600	7500	2700	
Bus Input Voltage	Vdc	9 – 28	22 – 36	22 – 36	
DC Power	W	16	45	30	
Processors		Xilinx V6 + Leon-3FT	Xilinx V5 + SPARC V8	Xilinx V5 + Leon-3FT	
Receiver Noise Figure	dB	3.5	2.1	2.1	
Receiver Sensitivity	dBm	-151 @ 20 Hz LBW	-160 @ 20 Hz LBW	-160 @ 20 Hz LBW	
Uplink Rate	sps	62.5 – 8k	7.8125 – 37.5M	7.8125 – 37.5M	
Downlink Rate	sps	62.5 – 6.125M	10 – 300M	10 – 300M	
Telemetry Encoding		Conv, RS, Turbo	Conv, RS, Turbo, LDPC	Conv, RS, Turbo, LDPC	
Radiation Tolerance (TID)	krads	23	50	300	
S/C Interface		1 MHz SPI	1553, SpaceWire, RS-422	1553, SpaceWire, RS-422	

Deep-Space Transponder Comparisons

^[1] M. Kobayashi, "Iris Deep-Space Transponder for SLS EM-1 CubeSat Missions", SmallSat Conf., Aug 2017.

^[2] General Dynamics, "Small Deep Space Transponder" available online http://gdmissionsystems.com

^[3] M. B. O'Neill, et.al., "Advances in Deep Space Radios", IEEE IMS, June 2017.

^[4] M. Pugh, et.al., "The Universal Space Transponder: A Next Generation Software Defined Radio", IEEE AeroConf, Mar 2017.

X-band Power Amplifiers

Vendor	Туре	Heritage	RF out / DC in	PAE	Mass	Volume
JPL/SDL	SSPA	MarCO, EM-1	4 / 17 W	23.5 %	150 g	66 cc
GD	SSPA	MER, MSL	17 / 59W	28.8 %	1320 g	1096 сс
TESAT	TWTA	JUNO	25 / 56 W	44.6 %	4800 g	N/A
TESAT	TWTA	MRO	102 / 172 W	59.3 %	4900 g	N/A

TESAT TWTA and EPC

Space Dynamics Lab SSPA

To increase downlink data rates of SmallSats, lower mass/volume SSPA with higher RF output power is desired

Current State-of-the-Art Development

Push for new Gallium Nitride (GaN) technology amplifiers

- High power density (smaller package, higher power)
- High junction temperature tolerance (more reliable)
- High radiation tolerance (reduce shielding and mass)

15% size reduction, but 6x power ~ 7.5x power density

Current State-of-the-Art Development

S-band is effectively closed due to limited bandwidth and terrestrial interference

X-band is the current workhorse for deep space communication, but getting crowded Ka-band is largely unused

- ~10x bandwidth capacity
- ~16x antenna gain efficiency
- ~4x radiometric precision

X/Ka/Ka Dual-band Radio

- Provides safe mode in X-band (LGA)
- Ka-band downlink advantages (above)
- Dual-band uplink can be used for radio-science investigations at planet bodies

Additive manufacturing methods for miniaturized Ka-band passive elements

Some Future Topics to Address

Proposed Deep-Space Optical Comm Ground Terminal Architecture

Summary

- Unique challenges of deep-space telecom
- The Deep Space Network continues to provide the ground infrastructure for telecom and navigation

- Software defined radios are advancing smart radio capabilities to enable rapid technology infusion
- Ka-band systems are not only advantageous, but will be a necessity for future SmallSats

jpl.nasa.gov